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The growth of an unbounded, density-stratified, turbulent shearing layer in the 
presence of a gravity field is studied using the postulate of marginal instability. It is 
found, for a similarity mean velocity and density distribution, that after a rapid 
initial growth rate the growth slows asymptotically to zero as the Richardson number 
approaches a value of $. Furthermore, the theory predicts a constant dominant turbu- 
lent eddy scale in all but the initial stages of growth of the turbulent shearing layer. 

Both the general growth characteristics and the constant dominant turbulent eddy 
scale predicted by the theory are confirmed by experimental data. 

1. Introduction 
The stability of an unbounded laminar shearing layer with density stratification in 

the presence of a gravity field has been studied by many authors including Helmholtz 
(1882), Kelvin (1871), Taylor (1931), Drazin (1958), Miles (1961) andHoward (1963). 
The effect of viscosity on the stability of such a flow was first investigated by Koppel 
(1964) and solutions of the unbounded problem obtained by Maslowe & Thompson 
(1971). 

The principle of marginal instability was used by Lessen & Singh (1974) and Lessen 
& Paillet (1976) to predict the spatial spread of unbounded turbulent shearing layers, 
jets and wakes along with the dominant eddy scales of such flows. This principle will 
now be applied t o  study the timewise growth, limiting thickness and dominant eddy 
scale of a turbulent shearing layer in the atmosphere using Maslowe & Thompson’s 
calculated linear stability results for the laminar case. 
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2. Theoretical considerations 
Horizontal parallel flow of an incompressible fluid whose density is a function of 

height may be modelled, in the Boussinesq approximation, in the manner of Koppel 

au 
at 

(1 964) as 

where t is time, y is the vertical co-ordinate (positive upwards), u is the horizontal 
velocity, T is the temperature, v is the kinematic viscosity (independent of y), K is the 
thermal conductivity, j? is the thermal coefficient of expansion, C is the specific heat, 
p is the density and the subscript zero denotes a reference quantity. 

For the case where v varies with time, (1)  may be solved as follows. Define T ,  7 and 0 
such that 

V(t’)dt’, 7 = 37-4, (2) 

U(Y,t) = UOR7). (3) 
Then 

where a prime indicates dldg. Substituting these equations into ( I )  yields 

and therefore 

In  like manner 

u = uOerf(y/2[/: vdt’]*]. 

T = To + perf (Pr#y/2 [ /: v dt’] ”), 
p = po-j3erf(p.4y/2[ /:vdt’]l), 

where the Prandtl number Pr = pvC/K. 
Browning & Watkins (1970) and Browning (1971), in their observations of Kelvin- 

Helmholtz billows in the atmosphere, noted that the thickness of the shearing layer 
corresponded closely to the thickness of the region of rapid temperature variation; it 
therefore seems reasonable to assume Pr = 1 for the turbulent case in the atmosphere. 
The same observation seems to be only approximately justified by the experimental 
study of Koop (1976) concerning instability and turbulence in a salinity-stratified 
shearing layer in water. 

The case P r  $: 1 is of interest because the velocity and density distributions may have 
different characteristic length scales. Since turbulent mass transport in the shearing 
layer occurs mainly within the wave breaking zone whereas turbulent momentum 
transport occurs via the Reynolds stress both within and outside the wave breaking 
zone, the turbulent Prandtl number is greater than unity. However, for the present, 
considerations will be limited to Pr = 1. Since (5) is a similarity solution for the shear- 
ing layer, the shearing-layer thickness 6 may be defined as 

Or d6ldt = ~126. 
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Maslowe & Thompson (1971) studied the stability of a steady, incompressible, 
viscous shearing layer for dimensionless velocity and density profiles given by 

;ii = tanhy*, i j  = exp (-/3tanhy*), (9) 

where T i  and are the dimensionless velocity and density respectively, y* is the dimen- 
sionless vertical co-ordinate and 6* is the associated length scale. Although the profiles 
given by (9) differ in a minor way from the similarity solutions given in (5)-(7), the 
stability characteristics calculated by Maslowe & Thompson (1  971) will still apply, to a 
good approximation, provided that we express all dependent functions in terms of the 
similarity variable 7. It is significant that the Maslowe & Thompson (1971) investiga- 
tion dealt with a basic flow that had a Prandtl number of unity while the perturbation 
equations were studied for a Prandtl number of 0.72. It is clear that the stability 
properties of the flow were probably not greatly affected by the Prandtl number used 
in the perturbat,ion equations. A basic flow with proper Prandtl number dependence 
would have made for a more consistent investigation. 

From the properties of the velocity distributions given in (5) and (9), it can be seen 
that for the maximum dimensional velocity gradients to be the same it isnecessary that 

6 = *6*J?r. (9a) 
The minimum critical Reynolds numbers R, and the corresponding dimensionless 
disturbance wavenumbers a, obtained by Maslowe & Thompson (1971) for a range of 
Richardson numbers can be closely approximated from their results as 

R, = GJOI(4 -Jo) ,  a, = 2J0, (10) 
where J, = gpS*/U,Z is the Richardson number and R, = U,S*lv is the Reynolds 
number. 

Since in the case of a turbulent shearing layer the mean dimensionless velocity 
distribution corresponds closely to that of a laminar shearing layer, it is presumed 
that the same holds for the velocity and density distributions in the present case. 

It is now postulated that the stratified turbulent shearing layer is marginally un- 
stable, i.e. that the Reynolds number (based on eddy viscosity) corresponds to the 
minimum critical Reynolds number found for the laminar flow as in (10). Introducing 
(9a) and (10) into (8), it follows that 

or 

which yields 

where 

dJo/df = (1 - 4J0)/48J,, 

f = - 3 In 1 1 - 4J01 - 1 2J0, 

f = 4g/3t/nUo. 

The dominant eddy wavenumber a,, which is equal to the critical dimensionless 
wavenumber ac corresponding to the Reynolds number A,, is 

a, = 2J0 = 2g/36*/U,Z. 

The dimensional dominant eddy wavelength A is therefore 

A = 2n6*/ae = nUt/g/3, (12) 
and can be seen to be, within the approximation of the theory developed herein, 
independent of time and therefore thickness. 
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FIGURE 1. Critical Reynolds number and wavenumber vs. Richardson number according to (10). 
x , 0,  points from Maslowe & Thompson (1971). 
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3. Results and discussion 
The data obtained from Maslowe & Thompson (1971)  and the best-fit curves (10) 

used in the development of the theory are shown in figure 1. A plot of J, us. 4g/3tldo 
for the turbulent stratified shearing layer derived from (1 1) is given in figure 2. It can 
be seen that the shearing layer thickens rapidly at first (when the critical Reynolds 
number based on the eddy viscosity is small) and approaches a limiting thickness 
asymptotically. The approximations of the model are that the mean flow is parallel, 
that the e-folding rate of the thickness growth is small compared with the disturbance 
frequency, that the molecular viscosity is negligible compared with the eddy viscosity 
and that the turbulent Prandtl number is unity. 

The most serious of the approximations is the one which tacitly assumes that the 
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initial rate of thickness growth is small compared with the frequency, and the poor 
representation of the actual phenomenon by the theory takes place when the Richard- 
son number J, = 0. For this case, the Maslowe-Thompson (1971) calculations give 
both a minimum critical Reynolds number and a critical wavenumber of zero (the 
neutral-stability curve passes through the origin in the a, R plane). If the theory in- 
cluded a correction that accounted for the disturbance decay due to the growth rate of 
the thickness scale, similar to that in the calculation of the low Reynolds number 
stability characteristics of the half-jet by Lessen & KO (1969), a non-zero critical 
Reynolds number and a non-zero critical wavenumber would occur on the neutral- 
stability curve for the Maslowe-Thompson (1  97 1 )  problem, demonstrating relative 
insensitivity to changes in the Richardson number at  low values of the Richardson 
number. The shearing layer would then (cf. the findings of Lessen & Paillet 1976) 
undergo a linear initial rate of growth instead of the infinite rate of growth given by the 
approximate theory embodied in (1 1); also, the dominant dimensional disturbance 
wavelength or turbulent eddy scale would grow linearly initially instead of remaining 
fixed as indicated in the approximate theory of (12). The initial rate of spread of the 
turbulent stratified shearing layer observed by Koop (1976) is given in his figure 42 b 
and is 

where Bu is the ‘ momentum ’ thickness calculated from the mean velocity profile and x 
is the streamwise co-ordinate measured from the initial point of contact of the mixing 
streams. For a (spatially) uniform mixing-shearing layer, the equivalent time co- 
ordinate is given by 

t = xluav, 

where Uav is the mean of the velocities of the mixing streams. To translate (13) into the 
notation used here, we write 

d8,ldx z 0.019, (13) 

(14) 

d8,ldt = Uavd8Jdx. (15) 

Since 6 = 4g/3t/nU0 and 8, as defined in Koop (1976) is is*, (15) finally becomes 

Again from Koop (1976, table I), U, = 3.9 cm 5-l and Uav = 7.1 cm s-I, yielding 
dJ,ld6 z 0.054, which, from (loa) and (1  1) ,  occurs when J ,  z 0.15 and 6 z 0.85. From 
(10) at J, = 0.15, R, = 9, which is comparable to the minimum critical Reynolds 
number of 12 found with the same length and velocity scales for a homogeneous half- 
jet corrected for small Reynolds number by Lessen & KO (1969). The half-jet results 
apply only qualitatively since the velocity profile is given by the Blasius equation 
instead of (9). After the initial period of growth, when the Maslowe-Thompson (1971) 
theory more accurately models the stability of the flow, the behaviour of (1  1 )  and (12) 
is substantiated by the experimental data of Koop (1976)) which indicate that in the 
later development of the turbulent shearing layer ‘vortex pairing’ ceases and finally 
the vortices themselves ‘ collapse ’ or die out (the terms in inverted commas are Koop’s). 

Finally, it is worthwhile to remark on the effects of non-similar growth of the 
shearing layer and turbulent Prandtl numbers greater than one. Because of these 
effects, the nominal Richardson number may grow to exceed 0.25 in a layer bounded 
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above and below by two regions of local Richardson number less than 0.25, in which 
case the initial turbulent shearing layer may split into two turbulent layers. This 
phenomenon has also been observed by Browning & Watkins (1970) and Browning 
(1971). Theoretical justification for the bifurcation to two critical layers is given in 
Hazel (1972). 

T. E. B. received partial support from'the Office of Naval Research. 
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